Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Exp Neurobiol ; 33(2): 77-98, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38724478

RESUMO

The development of the olfactory system is influenced by sensory inputs, and it maintains neuronal generation and plasticity throughout the lifespan. The olfactory bulb contains a higher proportion of interneurons than other brain regions, particularly during the early postnatal period of neurogenesis. Although the relationship between sensory stimulation and olfactory bulb development during the postnatal period has been well studied, the molecular mechanisms have yet to be identified. In this study, we used western blotting and immunohistochemistry to analyze the expression of the transcription factor Npas4, a neuron-specific immediate-early gene that acts as a developmental regulator in many brain regions. We found that Npas4 is highly expressed in olfactory bulb interneurons during the early postnatal stages and gradually decreases toward the late postnatal stages. Npas4 expression was observed in all olfactory bulb layers, including the rostral migratory stream, where newborn neurons are generated and migrate to the olfactory bulb. Under sensory deprivation, the olfactory bulb size and the number of olfactory bulb interneurons were reduced. Furthermore, Npas4 expression and the expression of putative Npas4 downstream molecules were decreased. Collectively, these findings indicate that Npas4 expression induced by sensory input plays a role in the formation of neural circuits with excitatory mitral/tufted cells by regulating the survival of olfactory bulb interneurons during the early stages of postnatal development.

2.
iScience ; 27(2): 108933, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318354

RESUMO

Neuritogenesis is crucial for establishing proper neuronal connections during brain development; its failure causes neurodevelopmental defects. Cullin-RING E3 ubiquitin ligase complexes participate in various neurodevelopmental processes by regulating protein stability. We demonstrated the regulatory function of Cullin-RING E3 ubiquitin ligase 4 (CRL4) in neurite morphogenesis during early neurodevelopment. Cul4a and Cul4b, the core scaffold proteins of CRL4, exhibit high expression and activation within the cytosol of developing neurons, regulated by neuronal stimulation through N-methyl D-aspartate (NMDA) receptor signaling. CRL4 also interacts with cytoskeleton-regulating proteins involved in neurite morphogenesis. Notably, genetic depletion and inhibition of cytosolic CRL4 enhance neurite extension and branching in developing neurons. Conversely, Cul4a overexpression suppresses basal and NMDA-enhanced neuritogenesis. Furthermore, CRL4 and its substrate adaptor regulate the polyubiquitination and proteasomal degradation of doublecortin protein. Collectively, our findings suggest that CRL4 ensures proper neurite morphogenesis in developing neurons by regulating cytoskeleton-regulating proteins.

3.
Exp Mol Med ; 55(8): 1806-1819, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537215

RESUMO

Social interaction among conspecifics is essential for maintaining adaptive, cooperative, and social behaviors, along with survival among mammals. The 5-hydroxytryptamine (5-HT) neuronal system is an important neurotransmitter system for regulating social behaviors; however, the circadian role of 5-HT in social interaction behaviors is unclear. To investigate whether the circadian nuclear receptor REV-ERBα, a transcriptional repressor of the rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) gene in 5-HT biosynthesis, may affect social interaction behaviors, we generated a conditional knockout (cKO) mouse by targeting Rev-Erbα in dorsal raphe (DR) 5-HT neurons (5-HTDR-specific REV-ERBα cKO) using the CRISPR/Cas9 gene editing system and assayed social behaviors, including social preference and social recognition, with a three-chamber social interaction test at two circadian time (CT) points, i.e., at dawn (CT00) and dusk (CT12). The genetic ablation of Rev-Erbα in DR 5-HTergic neurons caused impaired social interaction behaviors, particularly social preference but not social recognition, with no difference between the two CT points. This deficit of social preference induced by Rev-Erbα in 5-HTDR-specific mice is functionally associated with real-time elevated neuron activity and 5-HT levels at dusk, as determined by fiber-photometry imaging sensors. Moreover, optogenetic inhibition of DR to nucleus accumbens (NAc) 5-HTergic circuit restored the impairment of social preference in 5-HTDR-specific REV-ERBα cKO mice. These results suggest the significance of the circadian regulation of 5-HT levels by REV-ERBα in regulating social interaction behaviors.


Assuntos
Ritmo Circadiano , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Comportamento Social , Animais , Camundongos , Ritmo Circadiano/genética , Núcleo Dorsal da Rafe/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Serotonina , Interação Social
4.
Anal Chem ; 95(6): 3153-3159, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36656793

RESUMO

Dopamine (DA) homeostasis influences emotions, neural circuit development, cognition, and the reward system. Dysfunctions in DA regulation can lead to neurological disorders, including depression, developmental disorders, and addiction. DA homeostasis disruption is a primary cause of Parkinson's Disease (PD). Therefore, understanding the relationship between DA homeostasis and PD progression may clarify the mechanisms for pharmacologically treating PD. This study developed a novel in vitro DA homeostasis platform which consists of three main parts: (1) a microfluidic device for culturing DAergic neurons, (2) an optical detection system for reading DA levels, and (3) an automatic closed-loop control system that establishes when and how much medication to infuse; this uses a microfluidic device that can cultivate DAergic neurons, perfuse solutions, perform in vitro PD modeling, and continuously monitor DA concentrations. The automatically controlled closed-loop control system simultaneously monitors pharmacological PD treatment to support long-term monitoring of DA homeostasis. SH-SY5Y neuroblastoma cells were chosen as DAergic neurons. They were cultivated in the microfluidic device, and real-time cellular DA level measurements successfully achieved long-term monitoring and modulation of DA homeostasis. When applied in combination with multiday cell culture, this advanced system can be used for drug screening and fundamental biological studies.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Dopamina , Microfluídica , Neurônios Dopaminérgicos , Homeostase
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293357

RESUMO

Mammals recognize chemicals in the air via G protein-coupled odorant receptors (ORs). In addition to their orthosteric binding site, other segments of these receptors modulate ligand recognition. Focusing on human hOR1A1, which is considered prototypical of class II ORs, we used a combination of molecular modeling, site-directed mutagenesis, and in vitro functional assays. We showed that the third extracellular loop of ORs (ECL3) contributes to ligand recognition and receptor activation. Indeed, site-directed mutations in ECL3 showed differential effects on the potency and efficacy of both carvones, citronellol, and 2-nonanone.


Assuntos
Receptores Odorantes , Animais , Humanos , Sítios de Ligação/genética , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo
6.
Pharmaceutics ; 14(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893788

RESUMO

The key to current Alzheimer's disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-ß (Aß), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients' bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.

8.
Neurotherapeutics ; 19(2): 592-607, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322351

RESUMO

Parkinson's disease is a neurodegenerative disease characterized by progressive dopaminergic neuronal loss. Motor deficits experienced by patients with Parkinson's disease are well documented, but non-motor symptoms, including mood disorders associated with circadian disturbances, are also frequent features. One common phenomenon is "sundowning syndrome," which is characterized by the occurrence of neuropsychiatric symptoms at a specific time (dusk), causing severe quality of life challenges. This study aimed to elucidate the underlying mechanisms of sundowning syndrome in Parkinson's disease and their molecular links with the circadian clock. We demonstrated that 6-hydroxydopamine (6-OHDA)-lesioned mice, as Parkinson's disease mouse model, exhibit increased depression- and anxiety-like behaviors only at dawn (the equivalent of dusk in human). Administration of REV-ERBα antagonist, SR8278, exerted antidepressant and anxiolytic effects in a circadian time-dependent manner in 6-OHDA-lesioned mice and restored the circadian rhythm of mood-related behaviors. 6-OHDA-lesion altered DAergic-specific Rev-erbα and Nurr1 transcription, and atypical binding activities of REV-ERBα and NURR1, which are upstream nuclear receptors for the discrete tyrosine hydroxylase promoter region. SR8278 treatment restored the binding activities of REV-ERBα and NURR1 to the tyrosine hydroxylase promoter and the induction of enrichment of the R/N motif, recognized by REV-ERBα and NURR1, as revealed by ATAC-sequencing; therefore, tyrosine hydroxylase expression was elevated in the ventral tegmental area of 6-OHDA-injected mice, especially at dawn. These results indicate that REV-ERBα is a potential therapeutic target, and its antagonist, SR8278, is a potential drug for mood disorders related to circadian disturbances, namely sundowning syndrome, in Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Isoquinolinas , Camundongos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/etiologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/patologia , Qualidade de Vida , Tiofenos , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Brain Pathol ; 32(2): e13033, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34704631

RESUMO

Alzheimer's disease (AD) is the most prevalent form of dementia. Key AD symptoms include memory and cognitive decline; however, comorbid symptoms such as depression and sensory-perceptual dysfunction are often reported. Among these, a deterioration of olfactory sensation is observed in approximately 90% of AD patients. However, the precise pathophysiological basis underlying olfactory deficits because of AD remains elusive. The olfactory glomeruli in the olfactory bulb (OB) receive sensory information in the olfactory processing pathway. Maintaining the structural and functional integrity of the olfactory glomerulus is critical to olfactory signalling. Herein, we conducted an in-depth histopathological assessment to reveal detailed structural alterations in the olfactory glomeruli in AD patients. Fresh frozen post-mortem OB specimens obtained from six AD patients and seven healthy age-matched individuals were examined. We used combined immunohistochemistry and stereology to assess the gross morphology and histological alterations, such as those in the expression of Aß protein, microglia, and neurotransmitters in the OB. Electron microscopy was employed to study the ultrastructural features in the glomeruli. Significant accumulation of Aß, morphologic damage, altered neurotransmitter levels, and microgliosis in the olfactory glomeruli of AD patients suggests that glomerular damage could affect olfactory function. Moreover, greater neurodegeneration was observed in the ventral olfactory glomeruli of AD patients. The synaptic ultrastructure revealed distorted postsynaptic densities and a decline in presynaptic vesicles in AD specimens. These findings show that the primary olfactory pathway is affected by the pathogenesis of AD, and may provide clues to identifying the mechanism involved in olfactory dysfunction in AD.


Assuntos
Doença de Alzheimer , Bulbo Olfatório , Doença de Alzheimer/patologia , Autopsia , Humanos , Bulbo Olfatório/metabolismo , Olfato
10.
Curr Biol ; 32(2): 398-411.e4, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34906353

RESUMO

Animals detect and discriminate countless environmental chemicals for their well-being and survival. Although a single chemical can trigger opposing behavioral responses depending on its concentration, the mechanisms underlying such a concentration-dependent switching remain poorly understood. Here, we show that C. elegans exhibits either attraction or avoidance of the bacteria-derived volatile chemical dimethyl trisulfide (DMTS) depending on its concentration. This behavioral switching is mediated by two different types of chemosensory neurons, both of which express the DMTS-sensitive seven-transmembrane G protein-coupled receptor (GPCR) SRI-14. These two sensory neurons share downstream interneurons that process and translate DMTS signals via distinct glutamate receptors to generate the appropriate behavioral outcome. Thus, our results present one mechanism by which an animal connects two distinct types of chemosensory neurons detecting a common ligand to alternate downstream circuitry, thus efficiently switching between specific behavioral programs based on ligand concentration.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Receptores Odorantes/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Ligantes , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriais
11.
Redox Biol ; 49: 102223, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953452

RESUMO

Erythropoietin (EPO) is a well-known erythropoietic cytokine having a tissue-protective effect in various tissues against hypoxic stress, including the brain. Thus, its recombinants may function as neuroprotective compounds. However, despite considerable neuroprotective effects, the EPO-based therapeutic approach has side effects, including hyper-erythropoietic and tumorigenic effects. Therefore, some modified forms and derivatives of EPO have been proposed to minimize the side effects. In this study, we generated divergently modified new peptide analogs derived from helix C of EPO, with several amino acid replacements that interact with erythropoietin receptors (EPORs). This modification resulted in unique binding potency to EPOR. Unlike recombinant EPO, among the peptides, ML1-h3 exhibited a potent neuroprotective effect against oxidative stress without additional induction of cell-proliferation, owing to a differential activating mode of EPOR signaling. Furthermore, it inhibited neuronal death and brain injury under hypoxic stress in vitro and in an in vivo ischemic brain injury model. Therefore, the divergent modification of EPO-derivatives for affinity to EPOR could provide a basis for a more advanced and optimal neuroprotective strategy.


Assuntos
Eritropoetina , Fármacos Neuroprotetores , Eritropoetina/genética , Eritropoetina/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Peptídeos , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
12.
Biomed Opt Express ; 12(11): 7199-7222, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858710

RESUMO

Detecting Alzheimer's disease (AD) is an important step in preventing pathological brain damage. Working memory (WM)-related network modulation can be a pathological feature of AD, but is usually modulated by untargeted cognitive processes and individual variance, resulting in the concealment of this key information. Therefore, in this study, we comprehensively investigated a new neuromarker, named "refined network," in a prefrontal cortex (PFC) that revealed the pathological features of AD. A refined network was acquired by removing unnecessary variance from the WM-related network. By using a functional near-infrared spectroscopy (fNIRS) device, we evaluated the reliability of the refined network, which was identified from the three groups classified by AD progression: healthy people (N=31), mild cognitive impairment (N=11), and patients with AD (N=18). As a result, we identified edges with significant correlations between cognitive functions and groups in the dorsolateral PFC. Moreover, the refined network achieved a significantly correlating metric with neuropsychological test scores, and a remarkable three-class classification accuracy (95.0%). These results implicate the refined PFC WM-related network as a powerful neuromarker for AD screening.

13.
Cereb Cortex Commun ; 2(4): tgab058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746790

RESUMO

The brain's mechanisms for categorizing different odors have long been a research focus. Previous studies suggest that odor categorization may involve multiple neurological processes within the brain with temporal and spatial neuronal activation. However, there is limited evidence regarding temporally mediated mechanisms in humans, especially millisecond odor processing. Such mechanisms may be important because different brain areas may play different roles at a particular activation time during sensory processing. Here, we focused on how the brain categorizes odors at specific time intervals. Using multivariate electroencephalography (EEG) analysis, we found that similarly perceived odors induced similar EEG signals during 50-100, 150-200, and 350-400 ms at the theta frequency. We also found significant activation at 100-150 and 350-400 ms at the gamma frequency. At these two frequencies, significant activation was observed in some olfactory-associated areas, including the orbitofrontal cortex. Our findings provide essential evidence that specific periods may be related to odor quality processing during central olfactory processing.

14.
Sci Rep ; 11(1): 14048, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234199

RESUMO

As a promising future treatment for stroke rehabilitation, researchers have developed direct brain stimulation to manipulate the neural excitability. However, there has been less interest in energy consumption and unexpected side effect caused by electrical stimulation to bring functional recovery for stroke rehabilitation. In this study, we propose an engineering approach with subthreshold electrical stimulation (STES) to bring functional recovery. Here, we show a low level of electrical stimulation boosted causal excitation in connected neurons and strengthened the synaptic weight in a simulation study. We found that STES with motor training enhanced functional recovery after stroke in vivo. STES was shown to induce neural reconstruction, indicated by higher neurite expression in the stimulated regions and correlated changes in behavioral performance and neural spike firing pattern during the rehabilitation process. This will reduce the energy consumption of implantable devices and the side effects caused by stimulating unwanted brain regions.


Assuntos
Estimulação Elétrica/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Algoritmos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Gerenciamento Clínico , Humanos , Modelos Biológicos , Atividade Motora , Neurônios/metabolismo , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Sinapses/metabolismo , Potenciais Sinápticos
15.
BMB Rep ; 54(6): 295-304, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34162463

RESUMO

Olfactory neuropathology is a cause of olfactory loss in Alzheimer's disease (AD). Olfactory dysfunction is also associated with memory and cognitive dysfunction and is an incidental finding of AD dementia. Here we review neuropathological research on the olfactory system in AD, considering both structural and functional evidence. Experimental and clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, amyloid-ß production and neuroinflammation are related to underlying causes of impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest the evidence of ongoing neurodegeneration. Our aim in this review is to examine olfactory pathology findings essential to identifying mechanisms of olfactory dysfunction in the development of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods and causes of early pathogenesis in the olfactory system. [BMB Reports 2021; 54(6): 295-304].


Assuntos
Doença de Alzheimer/complicações , Vias Neurais/patologia , Doenças Neurodegenerativas/patologia , Transtornos do Olfato/patologia , Condutos Olfatórios/patologia , Animais , Humanos , Doenças Neurodegenerativas/etiologia , Transtornos do Olfato/etiologia
16.
Adv Sci (Weinh) ; 8(7): 2002362, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854875

RESUMO

As a surrogate for human tactile cognition, an artificial tactile perception and cognition system are proposed to produce smooth/soft and rough tactile sensations by its user's tactile feeling; and named this system as "tactile avatar". A piezoelectric tactile sensor is developed to record dynamically various physical information such as pressure, temperature, hardness, sliding velocity, and surface topography. For artificial tactile cognition, the tactile feeling of humans to various tactile materials ranging from smooth/soft to rough are assessed and found variation among participants. Because tactile responses vary among humans, a deep learning structure is designed to allow personalization through training based on individualized histograms of human tactile cognition and recording physical tactile information. The decision error in each avatar system is less than 2% when 42 materials are used to measure the tactile data with 100 trials for each material under 1.2N of contact force with 4cm s-1 of sliding velocity. As a tactile avatar, the machine categorizes newly experienced materials based on the tactile knowledge obtained from training data. The tactile sensation showed a high correlation with the specific user's tendency. This approach can be applied to electronic devices with tactile emotional exchange capabilities, as well as advanced digital experiences.


Assuntos
Biomimética/métodos , Cognição , Aprendizado Profundo , Tato , Interface Usuário-Computador , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
17.
Alzheimers Res Ther ; 13(1): 4, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397474

RESUMO

BACKGROUND: Hyposmia in Alzheimer's disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-ß (Aß), which is one of the toxic factors upregulated early in AD, has been identified in many studies, even in the peripheral areas of the olfactory system, the pathology involving olfactory sensory neurons (OSNs) remains poorly understood. METHODS: Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also confirmed histologically the pathological changes in 3-month-old 5xFAD mouse models, which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of the anatomical plane. RESULTS: We observed the odorant group that the 5xFAD mice showed reduced responses to odorants. These also did not physiologically activate OSNs that propagate their axons to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-ß (Aß) was high in the OSNs located in the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli. We also observed irreversible damage to the ectoturbinate of the olfactory epithelium by measuring the impaired neuronal turnover ratio from the basal cells to the matured OSNs. CONCLUSIONS: Our results showed that partial and asymmetrical accumulation of Aß coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely associated with peripheral OSN's loss could be a leading cause of AD-related hyposmia, a characteristic of early AD.


Assuntos
Neurônios Receptores Olfatórios , Peptídeos beta-Amiloides/metabolismo , Animais , Axônios/metabolismo , Camundongos , Camundongos Transgênicos , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Olfato
18.
Mol Psychiatry ; 26(8): 3737-3750, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32989244

RESUMO

Guanine nucleotide binding protein (G protein) gamma 8 (Gng8) is a subunit of G proteins and expressed in the medial habenula (MHb) and interpeduncular nucleus (IPN). Recent studies have demonstrated that Gng8 is involved in brain development; however, the roles of Gng8 on cognitive function have not yet been addressed. In the present study, we investigated the expression of Gng8 in the brain and found that Gng8 was predominantly expressed in the MHb-IPN circuit of the mouse brain. We generated Gng8 knockout (KO) mice by CRISPR/Cas9 system in order to assess the role of Gng8 on cognitive function. Gng8 KO mice exhibited deficiency in learning and memory in passive avoidance and Morris water maze tests. In addition, Gng8 KO mice significantly reduced long-term potentiation (LTP) in the hippocampus compared to that of wild-type (WT) mice. Furthermore, we observed that levels of acetylcholine (ACh) and choline acetyltransferase (ChAT) in the MHb and IPN of Gng8 KO mice were significantly decreased, compared to WT mice. The administration of nAChR α4ß2 agonist A85380 rescued memory impairment in the Gng8 KO mice, suggesting that Gng8 regulates cognitive function via modulation of cholinergic activity. Taken together, Gng8 is a potential therapeutic target for memory-related diseases and/or neurodevelopmental diseases.


Assuntos
Habenula , Acetilcolina , Animais , Aprendizagem , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Agonistas Nicotínicos
19.
Exp Neurobiol ; 29(5): 389-401, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33154200

RESUMO

During mid-life, women experienced not only physical but also neurological transition. Because of this, many women suffer from physiological and/or psychological menopausal symptoms. Although hormone therapy (HT) was broadly used to alleviate menopausal symptoms, HT showed inconsistent effects in case of psychological symptoms. Moreover, mid-life women's brains have distinct characteristics than in other periods of life, it is needed to study psychological symptoms in shifted brain network of mid-life women. As an alternative, inhalation of fragrances may alleviate psychological menopausal symptoms. To characterize the alleviation mechanism by fragrances, we tested the effect of fragrances on menopausal symptoms using electroencephalographic (EEG) methods. We hypothesized that fragrance could restore mid-life women's brain response to stressful situations. We tested six fragrance conditions, including no-odor condition (solvent only) in twenty-eight mid-life women (49.75 years±3.49). Our results showed that fragrances increased alpha power and decreased ß/α ratio depending on the severity of menopausal symptoms in a stressful situation. Our study would be helpful in psychological menopausal symptom alleviation as well as fragrance screening for well-being in mid-life.

20.
Sci Rep ; 10(1): 18117, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093624

RESUMO

Odor habituation is a phenomenon that after repeated exposure to an odor, is characterized by decreased responses to it. The central nervous system is involved in odor habituation. To study odor habituation in humans, measurement of event-related potentials (ERPs) has been widely used in the olfactory system and other sensory systems, because of their high temporal resolution. Most previous odor habituation studies have measured the olfactory ERPs of (200-800) ms. However, several studies have shown that the odor signal is processed in the central nervous system earlier than at 200 ms. For these reasons, we studied whether when odors were habituated, olfactory ERP within 200 ms of odors could change. To this end, we performed an odor habituation behavior test and electroencephalogram experiments. In the behavior test, under habituation conditions, odor intensity was significantly decreased. We found significant differences in the negative and positive potentials within 200 ms across the conditions, which correlated significantly with the results of the behavior test. We also observed that ERP latency depended on the conditions. Our study suggests that odor habituation can involve the olfactory ERP of odors within 200 ms in the brain.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados , Habituação Psicofisiológica/fisiologia , Odorantes , Olfato/fisiologia , Adulto , Animais , Humanos , Masculino , Condutos Olfatórios , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA